技术文章
当前位置:APP机器人 > 技术文章 > Quasi 流动培养实现血脑屏障细胞共培养
Quasi 流动培养实现血脑屏障细胞共培养
点击次数:38 发布时间:2020-07-22

血脑屏障(blood-brain barrier, BBB)在中枢神经系统(CNS)的生理和病理中都起着重要的作用。血脑屏障功能异常会引起包括阿尔茨海默症(AD)等许多神经退行性疾病。组成血脑屏障的毛细血管内皮细胞(capillary endothelial cells)、周细胞(pericytes)以及星形胶质细胞(astrocytes)间的复杂的相互作用使得很难在体内确定这三种细胞对神经毒性各自的贡献。而 Quasi Vivo 流动培养系统可为体外培养这三种细胞提供在不形成屏障的情况下维持细胞间通讯的最jia培养环境。Quasi Vivo 流动培养系统为未来研究不同类型的血脑屏障细胞在中枢神经系统疾病和细胞毒性试验中的特殊作用提供一个有价值的工具。(Miranda-Azpiazu P, et al. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing. Sci Rep. 2018; 8(1): 1-10.)
Quasi Vivo流动培养解决血脑屏障3种贴壁细胞共培养问题

图 1. 单独培养的人星形胶质细胞(A,GFAP 阳性)、周细胞(B,α-actin 阳性)、血管内皮细胞(C,CD31 阳性)以及血管内皮细胞形成的紧密连接(D,ZO1 阳性)。
Quasi Vivo流动培养解决血脑屏障3种贴壁细胞共培养问题

图 2 用 Quasi-Vivo QV500 培养共享相同的培养基的星形胶质细胞、周细胞和血管内皮细胞的示意图(A),R 为储液瓶,P 为蠕动泵。连接培养基存储瓶的一个 Quasi-Vivo QV500 流动培养系统的细胞培养腔室(B)。
Quasi Vivo流动培养解决血脑屏障3种贴壁细胞共培养问题

图 3 Quasi-Vivo QV500 流动培养系统建立的能同时培养三种不同细胞的多细胞共培养体系。
Quasi Vivo流动培养解决血脑屏障3种贴壁细胞共培养问题

图 4 几种流动培养方式示意图:A 图为单独星形角质细胞流动培养,B 图为单独周细胞流动培养,C 图为单独血管内皮细胞流动培养,D 图为三种细胞组合后一起流动培养。
Quasi Vivo流动培养解决血脑屏障3种贴壁细胞共培养问题

图 5 用 MTT 法测细胞活力,与静态培养相比,采用 Quasi-Vivo QV500 流动培养系统对单独培养血管内皮细胞(HBECs)、周细胞(HBVPs)、星形角质细胞(HAs)(A)或三种细胞共培养(B)的血管内皮细胞的细胞活力有明显升高。
Quasi Vivo流动培养解决血脑屏障3种贴壁细胞共培养问题

图 6 用 MTT 法测细胞活力,与静态培养(Static)相比,流动培养(Dynamic)的周细胞(HBVPs)会更早受到 Aβ25-35(淀粉样蛋白 β 肽的 Aβ25-35 片段,用于阿尔茨海默病的造模)的毒害。
Quasi Vivo流动培养解决血脑屏障3种贴壁细胞共培养问题
 
总结:本文中研究者利用 Quasi-Vivo QV500 流动培养系统建立了三种细胞的共培养。这些细胞不接触,通过共享培养基实现细胞间的通信,不形成屏障能更好的研究这些细胞类型单独对不同化合物的响应情况。并且研究者还发现共享相同培养基的星形胶质细胞、周细胞和血管内皮细胞的最适流速为 50 l/min。

作为创新型细胞培养方法,Quasi Vivo 流动培养已经全球 70 余家专业机构使用验证,获得了令人侧目的培养效果,在美、英、法、日等多国开展了颇具新意的细胞研究。

Quasi Vivo 流动培养广泛应用于血脑屏障、脑组织类器官、心血管、呼吸系统(热点)、肝脏、肾脏、肠道等各类器官模型培养中。
Quasi Vivo流动培养解决血脑屏障3种贴壁细胞共培养问题
 

Quasi Vivo参考文献

1.Tommaso S. et al., 2011. Engineering Quasi-Vivo in vitro organ models. Advances in Experimental Medicine and Biology Volume: 745, pp 138-153.
2.Patricia M. et al., 2018. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing. Scientific Reports Volume: 8, Issue: 1, pp 8784.
3.Basma E. et al. 2020. A dynamic perfusion based blood-brain barrier model for cytotoxicity testing and drug permeation. Scientific Reports Volume: 10, Issue: 1, pp 3788.
4.Miranda A. et al., 2016. A three dimensional (3D) human in vitro blood-brain barrier (BBB). Heart Volume: 102.
5.Buesch S. et al., 2018. A Novel In Vitro Liver Cell Culture Flow System Allowing Long-Term Metabolism and Hepatotoxicity Studies. Applied In Vitro Toxicology Volume: 4, Issue: 3, pp 232-237.
6.Alec O. et al., 2019. Development of an in vitro media perfusion model of Leishmania major macrophage infection. 2019 PLOS ONE Volume: 14, Issue: 7.
7.Sean M. et al., 2017. In-silico Characterisation of the Kirkstall QV900 In-Vitro System for Advanced Cell Culture. 5th International Conference on Computational and Mathematical Biomedical Engineering pp 1174-1177.
8.Ahluwalia A. et al., 2011. Hepatotoxicity of diclofenac in a Quasi-Vivo™ multicompartment bioreactor. oxicology Letters Volume: 205. 
9.Tomlinson, L. et al., 2019. In vitro liver zonation of primary rat hepatocytes.Front. Bioeng. Biotechnol., 7(17). 
10.Elbakary, B. and Badhan R. K. S, 2020. A dynamic perfusion based blood brain barrier model for cytotoxicity testing and drug permeation. Scientific Reports, 10(1),3788. 
11.O’Keefe, A. et al., 2019. Development of an in vitro media perfusion model of Leishmania major macrophage infection. Plos One, 14(7).  
12.Miranda-Azpiazu, P. et al., 2018. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases. Scientific Reports, 8, 8784. 
13.Chandorkar, P. et al., 2017. Fast-track development of an in vitro 3D lung/immune cell model to study Aspergillus infections. Scientific Reports, 7, 11644. 
14.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4).  
15.Mattei, G., Giusti, S. & Ahluwalia, A., 2014. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes, 2(3).   
16.Mazzei, D. et al., 2010. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnology and Bioengineering, 106.  
17.Nithiananthan, S. et al., 2016. Physiological Fluid Flow Moderates Fibroblast Responses to TGF-β1. Journal of Cellular Biochemistry, 13.   
18.Ramachandran, S.D. et al., 2015. In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE, 10(10).  
19.Rashidi, H. et al., 2016. Fluid shear stress modulation of hepatocyte like cell function. Archives of Toxicology, 90, 7.  
20.Vinci, B. et al., 2012. An in vitro model of glucose and lipid metabolism in a multicompartmental bioreactor. Biotechnology Journal, 7. 
21.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4), pp.1–9. 
22.Mattei, G., Giusti, S. & Ahluwalia, A., 2014. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes, 2, pp.548–569.  
23.Mazzei, D. et al., 2010. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnology and Bioengineering, 106, pp.127–137. 
24.Nithiananthan, S. et al., 2016. Physiological Fluid Flow Moderates Fibroblast Responses to TGF-β1. Journal of cellular biochemistry, 13(October), pp.1–13. Available at: 
25.Ramachandran, S.D. et al., 2015. In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE, 10(10), pp.1–14. 
26.Rashidi, H. et al., 2016. Fluid shear stress modulation of hepatocytelike cell function. Archives of Toxicology, pp.3–7. 
27.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4).  
28.Vinci, B. et al., 2011. Modular bioreactor for primary human hepatocyte culture: Medium flow stimulates expression and activity of detoxification genes. Biotechnology Journal, 6, pp.554–564. 
29.Tommaso S. et al., 2011. Engineering Quasi-Vivo in vitro organ models. Advances in Experimental Medicine and Biology Volume: 745, pp 138-153.
30.Ahluwalia A. et al., 2011. Hepatotoxicity of diclofenac in a Quasi-Vivo™ multicompartment bioreactor. oxicology Letters Volume: 205. 


Quasi Vivo 流动培养系统相关文章

-流动培养在 3D 培养中初步获得心肌细胞结构和功能
-流动培养原代肝细胞基因上调
-流动培养提高人支气管上皮细胞分化
-流动培养研究糖尿病脂肪酸-葡萄糖代谢cross-talk

LONZA 人原代细胞相关产品

-人肺微血管内皮细胞和培养基
-人星形胶质细胞和培养基

  • QQ咨询

  • 在线咨询
  • 科研技术服务
鼎盛赛车机器人 大资本彩票网 上海11选5 秒速牛牛是骗局吗 王者彩票开户 PK10哪个平台赔率高 招财猫机器人 北京快乐8 秒速牛牛登陆 新UB机器人